List of Poster Presentations

Odd numbers: Monday, Even numbers: Tuesday

All the posters can be posted on the boards from Monday to Wednesday.

No.	First Name	Last Name	Poster Title
P-01	Kirill	Shulga	Time-resolved probing of many body states in cavity QED
			superconducting circuits
P-02	Yeongmin	Jang	Numerical simulation of abnormal Shapiro steps in
			topological Josephson junction
P-03	Samuel	Wolski	Quantum sensing of magnons with a superconducting qubit
P-04	Yong-Joo	Doh	Topological insulator as a building block for superconducting
			qubit
P-05	Hayato	Goto	Quantum computation using Josephson parametric oscillators
P-06	Fabrizio	Minganti	Implementing efficient computational methods for large dissipative systems
P-07	Clemens	Gneiting	The effect of disorder in quantum devices
P-08	Nathan	Shammah	Open-source scientific computing for quantum technology:
			QuTiP
P-09	Ines	Rodrigues	Magnetic flux-mediated microwave optomechanics
P-10	Daniel	Bothner	Simulating the optomechanical strong-coupling regime using
			superconducting microwave circuits
P-11	Vincenzo	Macrì	Non-perturbative dynamical Casimir effect in optomechanical
			systems: Vacuum Casimir-Rabi splittings
P-12	Jan	Goetz	Qubit measurement by multichannel driving
P-13	Gerhard	Kirchmair	Magneto mechanical coupling of a mechanical oscillator to a
			superconducting circuit
P-14	Marios	Kounalakis	Mechanical quantum state preparation with superconducting
			qubits in single-photon strong-coupling circuit
			electromechanics
P-15	Mario	Gely	Observation and stabilization of photonic Fock states in a hot
			radio-frequency resonator
P-16	Shabir	Barzanjeh	Nonreciprocity and entanglement with quantum
			electromechanics
P-17	Io Chun	Hoi	Amplification without population inversion from a strongly
			driven superconducting qubit

P-18	Roberto	Stassi	Quantum bus building-block for a scalable quantum computer
D 40		1	architecture
P-19	Moonjoo	Lee	Coupling few nitrogen-vacancy centers to a superconducting
			microwave resonator
P-20	Yung-Fu	Chen	Possible Λ–type electromagnetically induced transparency
			schemes for transmon-type qubits
P-21	Jesper	Ilves	Generation of a microwave time-bin qubit with a
			superconducting qubit
P-22	Neill	Lambert	Virtual excitations: physical results from unphysical modes
P-23	Ken	Funo	Enhancing the driving speed of a quantum refrigerator via
			counter-diabatic driving
P-24	Long	Nguyen	Towards a fluxonium quantum processor
P-25	Yu	Zhou	Tunable microwave single-photon source based on transmon
			qubit with high efficiency
P-26	Gahyun	Choi	Quantum state tomography in three-qubit superconducting
			system
P-27	Hiroto	Mukai	Pseudo-2D superconducting quantum circuit for the surface
			codes
P-28	Yutaka	Shikano	Error identification by composite pulse technique in cloud-
			type quantum computer
P-29	Fumiki	Yoshihara	Cross-resonance-based readout scheme of a superconducting
			flux qubit
P-30	Tatyana	Yakovleva	Geometric phase as a measurements history function
P-31	Takashi	Noguchi	High-Q Nb thin-film superconducting microwave resonators
P-32	Tomoko	Fuse	Fast amplification and rephasing of an entangled cat state in
			a qubit-oscillator system
P-33	Sunmi	Kim	NbN-based superconducting quantum circuit on Si substrate
P-34	Hiroshi	Okamoto	Biological electron cryomicroscopy will be an application area
			of the NISQ devices
P-35	Sergey	Uchaikin	Effective low-pass filters for large scale superconducting qubit
			circuits
P-36	Binho	Le	Tradeoffs in postselection measurements
P-37	Hiraku	Toida	Electron spin resonance spectroscopy using flux qubit with an
			estimated 20 spin sensitivity
P-38	Takanori	Sugiyama	Self-consistent quantum tomography with constraints and
			regularization

P-39	Kentaro	Tamura	The superconducting quantum computer IBM 20Q Tokyo in
			the context of quantum random number generation
P-40	Shohei	Watabe	Quantum annealing based on Wajnflasz-Pick model
P-41	Jason	Ball	Ultra-low noise cryogenic microwave amplifier by spin masing
P-42	Wei	Qiu	Development of superconducting qubit with all-nitride superconducting materials
P-43	Cosmic	Raj	Probing XY phase transitions in a Josephson junction array with tunable frustration
P-44	Giacomo	Mariani	Wide-field imaging of microwave field by using NV centers in diamond
P-45	Nicolas	Gheeraert	Proposals for generating and detecting magnon Fock states
P-46	Kazumasa	Makise	Design and testing of flip chip bonding for 2.5D superconducting interconnection
P-47	Rui	Wang	Versatile vacuum gap crossovers (VGCs) for use in compact and low lossy quantum integrated circuits
P-48	Iuliia	Zotova	Tunable superconducting microwave beam splitter and switch on-chip
P-49	Zhirong	Lin	Real-time detection of an itinerant microwave photon using dressed-state engineering
P-50	Sahel	Ashhab	Spectral signatures of the superradiant phase in a possible circuit-QED realization of the Dicke model
P-51	Shingo	Kono	Breaking the trade-off between gate and relaxation times of a superconducting qubit with a Josephson quantum filter: Experiment
P-52	Arkady	Fedorov	Waveguide quantum electrodynamics with superconducting qubits in a 3D waveguide
P-53	Mutsuo	Hidaka	Fabrication process for Nb-based quantum annealing machine "AQUA1.0"
P-54	Antoine	Essig	Counting the number of photons in a cavity using the fluorescence of a coupled qubit
P-55	Kazuki	Koshino	Theory of Josephson quantum filter
P-56	Hiroki	Ikegami	Circuit-QED studies of Josephson junction arrays in the
			quantum regime
P-57	Ziqiao	Ao	Observation of forbidden transitions using coupled superconducting flux qubit-coplanar waveguide resonator circuit in ultra-strong coupling regime

P-58	Yasunari	Suzuki	Graph renormalization neural decoder for quantum error
			correction
P-59	Shumpei	Masuda	Theoretical study of on-chip single photon source based on
			adiabatic population transfer and shortcuts to adiabaticity
P-60	Yoshiro	Urade	Development of broadband flux-driven Josephson parametric
			amplifiers based on external impedance engineering
P-61	Yuichiro	Matsuzaki	One-way transfer of quantum states via decoherence
P-62	Masakazu	Hioki	Design verification of superconducting quantum annealing
			integrated circuits using EDA tools for VLSI
P-63	Tomohiro	Shitara	Ground state of a circuit QED system in the deep-strong
			coupling regime coupled to an environment
P-64	Daisuke	Saida	Investigation of basic characteristics of superconducting flux
			qubit for quantum machine learning
P-65	Kentaro	Heya	Demonstration of variational quantum gate optimization with
			superconducting qubits
P-66	Akiyoshi	Tomonaga	Superconducting lumped element resonator for quantum
			annealing
P-67	Ivan	lakoupov	Sequential microwave single-photon detector
P-68	Koji	Sakai	Electron spin polarization detection in cultured neurons using
			a superconducting flux qubit
P-69	Patrick	Zellekens	Towards semiconductor-superconductor hybrid qubits based
			on InAs/Al core/shell nanowires
P-70	Kentaro	Imafuku	Reconstruction of model for unknown probabilistic
			phenomena by quantum annealing computation
P-71	Taro	Yamashita	Phase-shift flux qubit with ferromagnetic π junction
P-72	Yusuke	Hama	Negative-temperature-state relaxation and reservoir-
			assisted-quantum-entanglement generation in double-spin-
			domain systems
P-73	Takahiro	Tsunoda	Hardware efficient gates for the variational quantum
			eigensolver using native coupling and spin echoes
P-74	Dengke	Zhang	Hybrid flux qubit for engineering the couplings in a
			superconducting quantum circuit
P-75	Joel	Wang	Hybrid superconducting circuits based on van der Waals
			heterostructures
P-76	Thomas	Ohki	Microwave properties of exfoliated hexagonal boron nitride
			for low loss miniaturized qubit capacitors

D 77	v 1:1:		A
P-77	Yoshiki	Sunada	A bandstop Purcell filter in a coaxial-line circuit QED device for
			fast generation of itinerant microwave photons
P-78	Yuya	Seki	Phase transition phenomena in Wajnflasz-Pick model
P-79	Shota	Norimoto	Fine etching process for fabrication of single electron sources
P-80	Go	Fujii	Development of Sn-filled superconducting through-silicon
			vias (SC-TSV) for large-scale superconducting quantum
			circuits
P-81	Sota	Kagami	Dynamics of Josephson parametric oscillator with large Kerr
			nonlinearity
P-82	Hanpei	Koike	AIST analog annealer: An experimental application-specific
			annealing circuit dedicated to integer factoring
P-83	Martin	Zemlicka	Compact SOI vacuum gaps transmon qubits
P-84	Joonas	Peltonen	Towards realization of a quantum heat engine based on a
			superconducting qubit
P-85	Adrian	Parra-	Canonical Hamiltonian models for superconducting circuits
		Rodriguez	