Emergent Phenomena Observation Technology Research Team

Principal Investigator

PI Name Daisuke Shindo
Degree D.Eng.
Title Team Leader
Brief Resume
1982D. Eng., Tohoku University
1982Research Associate, Institute for Materials Research at Tohoku University
1992Associate Professor, Institute for Advanced Materials Processing at Tohoku University
1994Professor, Institute of Multidisciplinary Research for Advanced Materials at Tohoku University
2010Visiting Scientist, Quantum Phenomena Observation Technology Team, RIKEN
2012Team Leader, Emergent Phenomena Observation Technology Research Team, RIKEN
2013Team Leader, Emergent Phenomena Observation Technology Research Team, Quantum Information Electronics Division, RIKEN Center for Emergent Matter Science (-present)
2019Professor Emeritus, Tohoku University (-present)


For observing and analyzing emergent matter phenomena, we use advanced electron microscopy, especially electron holography. Electron holography is a leading-edge observation technology that utilizes interference effects of electron waves and visualizes electromagnetic fields on the nanometer scale. By developing multifunctional transmission electron microscope-specimen holders equipped with plural probes, changes in the electromagnetic fields in and around specimens under applied voltages and magnetic fields are quantitatively investigated. By improving resolutions and precisions of these observation technologies, we can extensively study mechanisms of emergent matter phenomena in newly designed specimens for investigating many-body systems with multiple degrees of freedom.

Research Fields

Materials Science, Physics, Engineering


Electron microscopy
Lorentz microscopy
Flux quantum
Electron holography


In situ observation of accumulation and collective motion of electrons

Comprehensive understanding of electromagnetic fields requires their visualization both inside and outside of materials. Since electromagnetic fields originate from various motions of electrons, comprehensive study of motions of electrons is of vital importance as well as of significant interest for understanding various emergent phenomena. The purpose of this study is to extend electron holography technology to visualize motions of electrons. By detecting electric field variations through amplitude reconstruction processes for holograms, we have succeeded in visualizing collective motions of electrons around various insulating materials. The lower right figures below show one of our experimental results of visualization of the collective motions of electrons around microfibrils of sciatic nerve tissue. In these reconstructed amplitude images, the bright yellow regions indicate the area where electric field fluctuates due to the motions of electrons. At the initial state (top figure),the electric field variations are not prominent. When the electron irradiation continues, however, bright yellow regions appear and the position of the regions change gradually between the two branches as indicated by black arrows in the lower figures. These results indicate that the collective motions of electrons can be detected through electric field variation and can be visualized through amplitude reconstruction process for holograms.


Reconstructed amplitude images around microfibrils of sciatic nerve tissue (green).The bright yellow regions indicate the area where electric field fluctuates due to motions of electrons.


Daisuke Shindo

Team Leader daisuke.shindo[at]riken.jp R

Ken Harada

Senior Research Scientist

Yoh Iwasaki

Technical Scientist

Keiko Shimada

Technical Staff I


  1. D. Shindo, and Z. Akase

    Direct observation of electric and magnetic fields of functional materials

    Mater. Sci. Eng. R Rep. 142, 100564 (2020)
  2. N. Mathur, M. J. Stolt, K. Niitsu, X. Yu, D. Shindo, Y. Tokura, and S. Jin

    Electron Holography and Magnetotransport Measurements Reveal Stabilized Magnetic Skyrmions in Fe1-xCoxSi Nanowires

    ACS Nano 13, 7833 (2019)
  3. D. Shindo, T. Tanigaki, and H. S. Park

    Advanced Electron Holography Applied to Electromagnetic Field Study in Materials Science

    Adv. Mater. 29, 1602216 (2017)
  4. M. Nakamura, F. Kagawa, T. Tanigaki, H. S. Park, T. Matsuda, D. Shindo, Y. Tokura, and M. Kawasaki

    Spontaneous Polarization and Bulk Photovoltaic Effect Driven by Polar Discontinuity in LaFeO3/SrTiO3 Heterojunctions

    Phys. Rev. Lett. 116, 156801 (2016)
  5. K. Shibata, J. Iwasaki, N. Kanazawa, S. Aizawa, T. Tanigaki, M. Shirai, T. Nakajima, M. Kubota, M. Kawasaki, H. S. Park, D. Shindo, N. Nagaosa, and Y. Tokura

    Large anisotropic deformation of skyrmions in strained crystal

    Nat. Nanotechnol. 10, 589 (2015)



2-1 Hirosawa, Wako, Saitama 351-0198 Japan